Design Patterns & iOS

From abstraction to real value




Overture - Software
Development Philosophies

Done is better than perfect.

LIM: Less Is more.

KISS: Keep it simple, stupid.

DRY: Don't repeat yourself.




Overture - Object-oriented
programming

Object-oriented programming is hard, and
designing reusable object-oriented software is

even harder [3].

Before your code will be reusable it must actually




Overture - Gang of Four

Erich Gamma realized the importance of
recurring design patterns while working on his
PhD thesis and prior to the 1991 European

Conference on Object-Oriented Programming he

and Richard Helm stared to catalog patterns.
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What is a Design Pattern?

Christopher Alexander says, "Each pattern describes a
problem which occurs over and over again in our
environment, and then describes the core of the solution
to that problem, in such a way that you can use this
solution a million times over, without ever doing it the
same way twice" [4].

Design Pattern is a general reusable solution to




What is a Design Pattern?

Patterns are abstract design, not code.

Patterns that imply object-orientation or

generally mutable state, are not as applicable in

functional programming languages.




What is a Design Pattern?

Design Patterns required neither unusual
language features nor amazing programming
tricks. They might take a little more work than

ac hoc solutions but the extra effort invariably

pays dividends in increacec lexibility and




What is a Design Pattern?

Design Patterns == Wzorce Projektowe

Design Patterns < Wzorce Projektowe




Elements of a Design Pattern

In general, a pattern has four essential elements:

1. Name

2. Problem

3. Solution




Types of Design Patterns

Design patterns were grouped into the

categories:

1. Creational patterns

2. Structural patterns




Design Patterns in Cocoa

Start Developing iOS Apps Today

1. Model-View-Controller (MVC)

2. Target-action

3. Delegation




Model-View-Controller (MVC)

The Model-View-Controller (MVC) design pattern
assigns objects in an application one of three
roles: model, view, or controller. The pattern

defines not only the roles objects play in the

application, it defines the way objects




Model-View-Controller (MVC)

Cocoa version of MVC

Mediator
Strategy

User acticn | Controller |

Command
Composite




Model-View-Controller (MVC)

View objects

A view object is an object in an application that
users can see, A view object knows how to draw

itself and can respond to user actions. A major

urpose of view objectsisto « v oo o




Model-View-Controller (MVC)

Model objects

Model objects encapsulate the data specific to an
application and define the 'ogic and computation

that manipulate and process that data.

ldeally, a model object should have no explicit




Model-View-Controller (MVC)

Controller objects

A controller object acts as an intermediary

netween one or more of an application’s view

objects and one or more of its model obiecis [6].




Target-action

Target-action is a conceptually simple design in

which one object sends a message to another

object when a specific event occurs [5].




Target-action
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Target-action

[sel f.button addTarget: self
action: ol ector(doSonet hi ng: )
f or Cont rol Event s: Ul Cont r ol Event TouchUpl nsi de] ;

- (o ) doSonet hing: ( )sender
/1 Do sonething




Delegation

Delegation is a simple and powerful pattern in
which one object in an app acts on behalf of, or
in coordination with, another object. The
delegating object keeps a reference to the other

object—the delegate—and at the appropriate




Delegation

Corotocol Ul Scrol | Vi ewDel egat e<NSOh| ect >

- (vord)scrollViewb dScrol | : (Ul Scrol I View *)scroll View,
/'l any offset changes

- (vor ) scrol I Viewb dZoom (U Scrol I View *)scrol | View

NS AVAI LABLE 1 0S(3_2); // any zoom scal e changes

:'kBOOL)scroIIViewShouIdScroIIToTop:(UIScroIIVieM/*)scroIIViema /]
return a yes if you want to scroll to the top. if not defined, assunes
YES

- ( )scrollViewb dScrol | ToTop: (L) Scrol I View *)scrol | Vi ew, /Il
call ed when scrolling animation finished. may be called imediately if
already at to




Delegation
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Delegation

@pr ot ocol Ul Tabl eVi ewDel egat e<NSOhj ect, Ul Scrol | Vi enwDel egat e>
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Observer

1. Notifications
2. KVO




Data Access Object (DAO)

DAO is an object that provides an abstract
interface to some type of database or other
persistence mechanism. By mapping application
calls to the persistence layer, DAOs provide some

specific data operations without exposing details

of the database.




Other popular Design Patterns

Creational patterns:

1. Abstract factory 5. Object pool
2. Builder 6. Prototype
3. Factory method /. Singleton




Abstract factory
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Abstract factory

Provide an interface for creating families of

related or dependent objects without specifying

their concrete classes [3].




Abstract factory

Class diagram

Client

<<use>>

<<Interface>>
OCAbstractFactory
+createProductA() : OCAbstractProductA
+createProductB() : OCAbstractProductB

<kuse>> <<use>>

OCFirstFactory OCSecondFactory

+createProductA() : OCAbstractProductA +createProductA() : OCAbstractProductA
+createProductB() : OCAbstractProductB +createProductB() : OCAbstractProductB

<<i:nstantiate>> <<Interface>> <<Interface>>
| Create OCAbstractProductA OCAbstractProductB

<<instantiate>> <<i:nstantiate>> <<instantiate>>

create | Create create
|

OCFirstProductA OCFirstProductB OCSecondProductA OCSecondProductB




Abstract factory

1. It isolates concrete classes.
2. It makes exchanging product families easy.

3. It promotes consistency among products.

4. Supporting new kinds of products is difficult.




Builder

Separate the construction of a complex object
from its representation so that the same

construction process can create different

representations [3].




Builder

Class diagram

OCConcreteBuilder
+initWithPropertyA() : OCConcreteBuilder OCConcreteProduct

<<use>> +withPropertyB() : OCConcreteBuilder -propertyA
- ---------- >|+withPropertyC() : OCConcreteBuilder > —propertyB
+build() : OCConcreteProduct <<instantiate> > -propertyC

create

1

+createlnstanceOfProduct() : OCConcreteProduct




Builder

Classical Builder Pattern:

OCConcr et eBui | der *buil der = [[ OCConcr et eBuil der al | oc]
I nit WthPropertyA: 1];

OCConcr et ePr oduct *product
wi t hPropertyC. 3] build];

[[[buil der w thPropertyB: 2]




Builder

Using category:

OCConcr et eProduct B *productB = [[[[ OCConcr et eProduct B
alloc] initWthPropertyA: 1] w thPropertyB: 2]
w t hPropertyC. 3] ;




Builder

1. It lets you vary a product's internal

representation.

2. It isolates code for construction and

representation.

3. It gives you finer control over the construction




Factory method

Define an interface for creating an object, but let
subclasses decide which class to instantiate.

Factory Method lets a class defer instantiation to

subclasses.




Factory method

Class diagram

+createProduct()

- +doSomethingWithTheProduct()
/\

/\

OCProductA
<<_<instamlate>>_ - OCProductACreator

+createProdut()




Factory method

| d<OCPr oduct > product A = [ OCFact ory
creat eProduct : Product TypeA] ;

| d<OCPr oduct > productB = [ OCFact ory
cr eat ePr oduct : Product TypeB];




Factory method

1. Factory methods eliminate the need to bind
application-specific classes into your code.

2. Connects parallel class hierarchies.

A potential disadvantage of factory methods is

that clients might have to subclass the Creator




Lazy initialization

Lazy initialization is the tactic of delaying the
creation of an object, the calculation of a value,

or some other expensive process until the first

time it is needed [9].




Lazy initialization

@roperty (readonly) OCHE enent *el enent;
/] @ynt hesi ze

- (OCEl enent *) el enent

0 (_element == 1) {

}

_element = [ OCEl enent newj ;




Object pool

Object pool uses a set of initialized objects kept

ready to use, rather than allocating and

destroying them on demand.




Object pool

Class diagram

<<use>> OCObjectPool

- “““““ > +sharedlnstance() : OCObjectPool
+acquireReusableObject() : OCReusableObject

+releaseReusableObject(reusableObject : OCReusableObject)

<<use>> OCReusableObject

"""""""""" 1




Prototype

Specify the kinds of objects to create using a

prototypical instance, and create new objects by

copying this prototype [3].

( , ) OCConcretePrototypeA *prototype;




Prototype

Class diagram

<<Interface>>
NSCopying
+copyWithZone(zone : NSZone) : id

/\

< <Uses> <<Interface> >

- ———————————————— >| OCPrototype
]

/\ /\

OCConcretePrototypeA OCConcretePrototypeB

+copyWithZone(zone : NSZone) : id +copyWithZone(zone : NSZone) : id




Prototype

Your options for implementing NSCopying

protocol are as follows:

1. Implement NSCopying using alloc and init.

2. Implement NSCopying by invoking the

superclass’s copyWithZone.



file:///Users/maiw/Library/Developer/Shared/Documentation/DocSets/com.apple.adc.documentation.AppleiOS7.0.iOSLibrary.docset/Contents/Resources/Documents/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/Reference/Reference.html#//apple_ref/occ/clm/NSObject/alloc

Singleton

Common singletons:

[ Ul Appl i cati on sharedApplication];
| NSFi | eManager def aul t Manager] ;

[ NSNot i ficati onCenter defaul tCenter];

[ U Devi ce currentDevice];




Singleton

Use the Singleton pattern when there must be
exactly one instance of a class, and it must be

accessible to clients from a well-known access

point [3].




Singleton

Class diagram

OCSingleton

- _ _ <<use>> _>w
+doSomething()




Other popular Design Patterns

Structural patterns:

1. Adapter (Wrapper) 4. Decorator
2. Bridge 5. Facade
3. Composite 6. Proxy




Adapter (Wrapper)

Convert the interface of a class into another
nterface clients expect. Adapter lets classes

work together that couldn't otherwise because of

incompatible interfaces [3].




Adapter (Wrapper)

Class diagram

5 <<Interface>>
o cusess _> OCTarget
/\

OCAdapter

-adaptee : OCAdaptee OCAdaptee

+methodA() adaptee +methodB()

[self.adaptee
methodB];




Adapter (Wrapper)

1. How much adapting does Adapter do?

2. An adapter class is more reusable when you

minimize the assumptions other classes must

make to use it.




Bridge

Decouple an abstraction from its implementation

so that the two can vary independently.




Bridge

Class diagram

<<use>>

implementor <<Interface>>
OCImplementor
+doSomething(command : NSString) +doSomething(command : NSString)

+performFirstAction() A A

+performSecondAction()

OCRefinedAbstraction OCConcretelmplementorA OCConcretelmplementorB

+performFirstAction() +doSomething(command : NSString) +doSomething(command : NSString)
+performSecondAction()




Bridge

1. Improved extensibility.

2. Hiding implementation details from clients.




Bridge

Class diagram

<<use>>

implementor <<Interface>>
OCImplementor
+doSomething(command : NSString) +doSomething(command : NSString)

+performFirstAction() A A

+performSecondAction()

OCRefinedAbstraction OCConcretelmplementorA OCConcretelmplementorB

+performFirstAction() +doSomething(command : NSString) +doSomething(command : NSString)
+performSecondAction()




Composite

How to create XML, HTML, or PDF documents

dynamically?

How to create a complex UlView dynamically?




Composite

Compose objects into tree structures to
represent part-whole hierarchies. Composite lets

clients treat individual objects and compositions

of objects uniformly [3].




Composite

Class diagram

+doSomething()

LLuUsex> - - > +addChild(child : OCComponent)
+removeChild(child : OCComponent)
+amountOfChilds() : NSUInteger
+childAtindex(index : NSUIneteger) : OCComponent

+doSomething() +doSomething() childs
+addChild(child : OCComponent)

+removeChild(child : OCComponent)
+amountOfChilds() : NSUInteger
+childAtindex(index : NSUInteger) : OCComponent




Composite

1. Explicit parent references.
2. Sharing components.
3. Maximizing the Component interface.

4. Declaring the child management operations.

5. Should Component implement a list of




Decorator

Attach additional responsibilities to an object
dynamically. Decorators provide a flexible

alternative to subclassing for extending

functionality [3].




Decorator

Class diagram

c<Uses> <<Interface>>
D RS >| 0CComponent

| +doSomething()

component

OCConcreteDecorator OCDecorator

+doSomethingElse() +doSomething()

OCConcreteDecorator

+doSomethingElse()




Decorator

1. More flexibility than static inheritance. (run-

time)

2. Avoids feature-laden classes high up in the

hierarchy.




Facade

Provide a unified interface to a set of interfaces

in a subsystem. Facade defines a higher-level

interface that makes the subsystem easier to use

[3].




Facade

X
o
T
2
G

subsyslem classes




Facade

1. It shields clients from subsystem components.

2. It promotes weak coupling between the
subsystem and its clients.

3. It doesn't prevent applications from using
subsystem classes.




Facade

1. It shields clients from subsystem components.

2. It promotes weak coupling between the
subsystem and its clients.

3. It doesn't prevent applications from using
subsystem classes.




Proxy

Provide a surrogate or placeholder for another

object to control access to it [3].




Proxy

1. A remote proxy can hide the fact that an
object resides in a different address space.

2. A proxy can perform optimizations such as
creating an object on demand.

3. Allows to add additional housekeeping tasks
when an object is accessed.




Other popular Design Patterns

Behavioral patterns:

1. Chain of 6. Memento
responsibility 7. Null object
2. Command 8. State

Strate




Chain of responsibility

TODO




Command

TODO




Interpreter

TODO




lterator

TODO




Mediator

TODO




Memento

TODO




Null object

TODO




State

TODO




Strategy

TODO




Template method

TODO




Visitor

TODO




Case Study

TODO




Use or not?

TODO




Further resources

[1] http://en.wikipedia.org/wiki/Software_design_pattern

[2] http://en.wikipedia.org/wiki/List_of_software_development_philosophies

[3] Gamma, Helm, Johnson & Vlissides (1994). Design Patterns (the Gang of Four book).
Addison-Wesley. ISBN 0-201-63361-2.

[4] Alexander, Christopher (1977). A Pattern Language: Towns, Buildings, Construction.

Oxford University Press. ISBN 0-19-501919-9.

[5]
https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/DesignPattern

[6]

https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/|



http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/List_of_software_development_philosophies
https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/DesignPatterns.html
https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/MVC.html
https://developer.apple.com/library/ios/documentation/general/conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
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