Design Patterns & iOS

From abstraction to real value

Overture - Software
Development Philosophies

Done is better than perfect.

LIM: Less Is more.

KISS: Keep it simple, stupid.

DRY: Don't repeat yourself.

Overture - Object-oriented
programming

Object-oriented programming is hard, and
designing reusable object-oriented software is

even harder [3].

Before your code will be reusable it must actually

Overture - Gang of Four

Erich Gamma realized the importance of
recurring design patterns while working on his
PhD thesis and prior to the 1991 European

Conference on Object-Oriented Programming he

and Richard Helm stared to catalog patterns.

Contents

1. Introduction

2. Design Patterns in Cocoa

3. Other popular Design Patterns
4. Case study

5. Use or not?

What is a Design Pattern?

Christopher Alexander says, "Each pattern describes a
problem which occurs over and over again in our
environment, and then describes the core of the solution
to that problem, in such a way that you can use this
solution a million times over, without ever doing it the
same way twice" [4].

Design Pattern is a general reusable solution to

What is a Design Pattern?

Patterns are abstract design, not code.

Patterns that imply object-orientation or

generally mutable state, are not as applicable in

functional programming languages.

What is a Design Pattern?

Design Patterns required neither unusual
language features nor amazing programming
tricks. They might take a little more work than

ac hoc solutions but the extra effort invariably

pays dividends in increacec lexibility and

What is a Design Pattern?

Design Patterns == Wzorce Projektowe

Design Patterns < Wzorce Projektowe

Elements of a Design Pattern

In general, a pattern has four essential elements:

1. Name

2. Problem

3. Solution

Types of Design Patterns

Design patterns were grouped into the

categories:

1. Creational patterns

2. Structural patterns

Design Patterns in Cocoa

Start Developing iOS Apps Today

1. Model-View-Controller (MVC)

2. Target-action

3. Delegation

Model-View-Controller (MVC)

The Model-View-Controller (MVC) design pattern
assigns objects in an application one of three
roles: model, view, or controller. The pattern

defines not only the roles objects play in the

application, it defines the way objects

Model-View-Controller (MVC)

Cocoa version of MVC

Mediator
Strategy

User acticn | Controller |

Command
Composite

Model-View-Controller (MVC)

View objects

A view object is an object in an application that
users can see, A view object knows how to draw

itself and can respond to user actions. A major

urpose of view objectsisto « v oo o

Model-View-Controller (MVC)

Model objects

Model objects encapsulate the data specific to an
application and define the 'ogic and computation

that manipulate and process that data.

ldeally, a model object should have no explicit

Model-View-Controller (MVC)

Controller objects

A controller object acts as an intermediary

netween one or more of an application’s view

objects and one or more of its model obiecis [6].

Target-action

Target-action is a conceptually simple design in

which one object sends a message to another

object when a specific event occurs [5].

Target-action

v Triggered Segues
action

¥ OQutlet Collections
gestureRecognizers

¥ Sent Events
Did End On Exit
Editing Changed
Editing Did Begin
Editing Did End
Touch Cancel
Touch Down
Touch Down Repeat
Touch Drag Enter
Touch Drag Exit
Touch Drag Inside
Touch Drag OQutside

(! =2Act i on)randNunber sAct i on:
-) sender

/1 Do sonet hing

o ot Vo N |

000000000 O0O O O

Touch Up Outside
Value Changed
¥ Referencing Outlets

0)®)

New Referencing QOutlet
v Referencing Outlet Collections
New Referencing Qutlet Collection

o O

Target-action

[sel f.button addTarget: self
action: ol ector(doSonet hi ng:)
f or Cont rol Event s: Ul Cont r ol Event TouchUpl nsi de] ;

- (o) doSonet hing: ()sender
/1 Do sonething

Delegation

Delegation is a simple and powerful pattern in
which one object in an app acts on behalf of, or
in coordination with, another object. The
delegating object keeps a reference to the other

object—the delegate—and at the appropriate

Delegation

Corotocol Ul Scrol | Vi ewDel egat e<NSOh| ect >

- (vord)scrollViewb dScrol | : (Ul Scrol I View *)scroll View,
/'l any offset changes

- (vor) scrol I Viewb dZoom (U Scrol I View *)scrol | View

NS AVAI LABLE 1 0S(3_2); // any zoom scal e changes

:'kBOOL)scroIIViewShouIdScroIIToTop:(UIScroIIVieM/*)scroIIViema /]
return a yes if you want to scroll to the top. if not defined, assunes
YES

- ()scrollViewb dScrol | ToTop: (L) Scrol I View *)scrol | Vi ew, /Il
call ed when scrolling animation finished. may be called imediately if
already at to

Delegation

Corotocol U Tabl eVi ewDat aSour ce<NSCh| ect >
@ equi r ed

- (NSInteger)tabl eview (U Tabl eView *)tabl eVi ew nunber O Rowsl nSecti on:
(NSI nt eger) secti on;

/'l Row di spl ay. Inplenenters shoul d *al ways* try to reuse cells by
setting each cell's reuseldentifier and querying for avail able
reusable cells wth dequeueReusabl eCel | Wt hldentifier:

/] Cell gets various attributes set autonmatically based on table
(separators) and data source (accessory views, editing controls)

- (L Tableviencell *YtableView (U Tabl eview *)tabl eVi ew
cel | For RowAt | ndexPat h: ("= ncexai b *) i ndexPat h;

Delegation

@pr ot ocol Ul Tabl eVi ewDel egat e<NSOhj ect, Ul Scrol | Vi enwDel egat e>

/| Variabl e hei ght support

- (CG-loat)tableView (U Tabl eview *)tabl eVi ew hei ght For RowAt | ndexPat h:
(NS ndexPat h *)i ndexPat h;

- (CG-loat)tableView (U TableView *)tabl eVi ew

hei ght For Header | nSecti on: (NSl nt eger) secti on;

- (CG-loat)tableView (U TableView *)tabl eVi ew

hei ght For Foot er I nSecti on: (NSl nt eger) secti on;

/] Called after the user changes the sel ecti on.
- ()tableView () Tableview *)tabl eVi ew di dSel ect RowAt | ndexPat h:

(NSI n_dexPat 7 *)indexPat h;

a

a A\\ * 3 N a N\ /) dAi dDe a a LN \W/A alel=) N -

Observer

1. Notifications
2. KVO

Data Access Object (DAO)

DAO is an object that provides an abstract
interface to some type of database or other
persistence mechanism. By mapping application
calls to the persistence layer, DAOs provide some

specific data operations without exposing details

of the database.

Other popular Design Patterns

Creational patterns:

1. Abstract factory 5. Object pool
2. Builder 6. Prototype
3. Factory method /. Singleton

Abstract factory

esecoOfange = 3 01:29 - 1‘35%'
- Warsaw
' - Mostly Clear -
O-O |
Thursday Today 9 -1
Now 02 03 04 05 06
C 85 & & & &5
0 2 1 1 0] 0]

Friday E'a 11 1
Saturday O 8 O
Sunday B 9 -1
Monday B 8 -1
Tuesday 77

!

Abstract factory

Provide an interface for creating families of

related or dependent objects without specifying

their concrete classes [3].

Abstract factory

Class diagram

Client

<<use>>

<<Interface>>
OCAbstractFactory
+createProductA() : OCAbstractProductA
+createProductB() : OCAbstractProductB

<kuse>> <<use>>

OCFirstFactory OCSecondFactory

+createProductA() : OCAbstractProductA +createProductA() : OCAbstractProductA
+createProductB() : OCAbstractProductB +createProductB() : OCAbstractProductB

<<i:nstantiate>> <<Interface>> <<Interface>>
| Create OCAbstractProductA OCAbstractProductB

<<instantiate>> <<i:nstantiate>> <<instantiate>>

create | Create create
|

OCFirstProductA OCFirstProductB OCSecondProductA OCSecondProductB

Abstract factory

1. It isolates concrete classes.
2. It makes exchanging product families easy.

3. It promotes consistency among products.

4. Supporting new kinds of products is difficult.

Builder

Separate the construction of a complex object
from its representation so that the same

construction process can create different

representations [3].

Builder

Class diagram

OCConcreteBuilder
+initWithPropertyA() : OCConcreteBuilder OCConcreteProduct

<<use>> +withPropertyB() : OCConcreteBuilder -propertyA
- ---------- >|+withPropertyC() : OCConcreteBuilder > —propertyB
+build() : OCConcreteProduct <<instantiate> > -propertyC

create

1

+createlnstanceOfProduct() : OCConcreteProduct

Builder

Classical Builder Pattern:

OCConcr et eBui | der *buil der = [[OCConcr et eBuil der al | oc]
I nit WthPropertyA: 1];

OCConcr et ePr oduct *product
wi t hPropertyC. 3] build];

[[[buil der w thPropertyB: 2]

Builder

Using category:

OCConcr et eProduct B *productB = [[[[OCConcr et eProduct B
alloc] initWthPropertyA: 1] w thPropertyB: 2]
w t hPropertyC. 3] ;

Builder

1. It lets you vary a product's internal

representation.

2. It isolates code for construction and

representation.

3. It gives you finer control over the construction

Factory method

Define an interface for creating an object, but let
subclasses decide which class to instantiate.

Factory Method lets a class defer instantiation to

subclasses.

Factory method

Class diagram

+createProduct()

- +doSomethingWithTheProduct()
/\

/\

OCProductA
<<_<instamlate>>_ - OCProductACreator

+createProdut()

Factory method

| d<OCPr oduct > product A = [OCFact ory
creat eProduct : Product TypeA] ;

| d<OCPr oduct > productB = [OCFact ory
cr eat ePr oduct : Product TypeB];

Factory method

1. Factory methods eliminate the need to bind
application-specific classes into your code.

2. Connects parallel class hierarchies.

A potential disadvantage of factory methods is

that clients might have to subclass the Creator

Lazy initialization

Lazy initialization is the tactic of delaying the
creation of an object, the calculation of a value,

or some other expensive process until the first

time it is needed [9].

Lazy initialization

@roperty (readonly) OCHE enent *el enent;
/] @ynt hesi ze

- (OCEl enent *) el enent

0 (_element == 1) {

}

_element = [OCEl enent newj ;

Object pool

Object pool uses a set of initialized objects kept

ready to use, rather than allocating and

destroying them on demand.

Object pool

Class diagram

<<use>> OCObjectPool

- “““““ > +sharedlnstance() : OCObjectPool
+acquireReusableObject() : OCReusableObject

+releaseReusableObject(reusableObject : OCReusableObject)

<<use>> OCReusableObject

"""""""""" 1

Prototype

Specify the kinds of objects to create using a

prototypical instance, and create new objects by

copying this prototype [3].

(,) OCConcretePrototypeA *prototype;

Prototype

Class diagram

<<Interface>>
NSCopying
+copyWithZone(zone : NSZone) : id

/\

< <Uses> <<Interface> >

- ———————————————— >| OCPrototype
]

/\ /\

OCConcretePrototypeA OCConcretePrototypeB

+copyWithZone(zone : NSZone) : id +copyWithZone(zone : NSZone) : id

Prototype

Your options for implementing NSCopying

protocol are as follows:

1. Implement NSCopying using alloc and init.

2. Implement NSCopying by invoking the

superclass’s copyWithZone.

file:///Users/maiw/Library/Developer/Shared/Documentation/DocSets/com.apple.adc.documentation.AppleiOS7.0.iOSLibrary.docset/Contents/Resources/Documents/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/Reference/Reference.html#//apple_ref/occ/clm/NSObject/alloc

Singleton

Common singletons:

[Ul Appl i cati on sharedApplication];
| NSFi | eManager def aul t Manager] ;

[NSNot i ficati onCenter defaul tCenter];

[U Devi ce currentDevice];

Singleton

Use the Singleton pattern when there must be
exactly one instance of a class, and it must be

accessible to clients from a well-known access

point [3].

Singleton

Class diagram

OCSingleton

- _ _ <<use>> _>w
+doSomething()

Other popular Design Patterns

Structural patterns:

1. Adapter (Wrapper) 4. Decorator
2. Bridge 5. Facade
3. Composite 6. Proxy

Adapter (Wrapper)

Convert the interface of a class into another
nterface clients expect. Adapter lets classes

work together that couldn't otherwise because of

incompatible interfaces [3].

Adapter (Wrapper)

Class diagram

5 <<Interface>>
o cusess _> OCTarget
/\

OCAdapter

-adaptee : OCAdaptee OCAdaptee

+methodA() adaptee +methodB()

[self.adaptee
methodB];

Adapter (Wrapper)

1. How much adapting does Adapter do?

2. An adapter class is more reusable when you

minimize the assumptions other classes must

make to use it.

Bridge

Decouple an abstraction from its implementation

so that the two can vary independently.

Bridge

Class diagram

<<use>>

implementor <<Interface>>
OCImplementor
+doSomething(command : NSString) +doSomething(command : NSString)

+performFirstAction() A A

+performSecondAction()

OCRefinedAbstraction OCConcretelmplementorA OCConcretelmplementorB

+performFirstAction() +doSomething(command : NSString) +doSomething(command : NSString)
+performSecondAction()

Bridge

1. Improved extensibility.

2. Hiding implementation details from clients.

Bridge

Class diagram

<<use>>

implementor <<Interface>>
OCImplementor
+doSomething(command : NSString) +doSomething(command : NSString)

+performFirstAction() A A

+performSecondAction()

OCRefinedAbstraction OCConcretelmplementorA OCConcretelmplementorB

+performFirstAction() +doSomething(command : NSString) +doSomething(command : NSString)
+performSecondAction()

Composite

How to create XML, HTML, or PDF documents

dynamically?

How to create a complex UlView dynamically?

Composite

Compose objects into tree structures to
represent part-whole hierarchies. Composite lets

clients treat individual objects and compositions

of objects uniformly [3].

Composite

Class diagram

+doSomething()

LLuUsex> - - > +addChild(child : OCComponent)
+removeChild(child : OCComponent)
+amountOfChilds() : NSUInteger
+childAtindex(index : NSUIneteger) : OCComponent

+doSomething() +doSomething() childs
+addChild(child : OCComponent)

+removeChild(child : OCComponent)
+amountOfChilds() : NSUInteger
+childAtindex(index : NSUInteger) : OCComponent

Composite

1. Explicit parent references.
2. Sharing components.
3. Maximizing the Component interface.

4. Declaring the child management operations.

5. Should Component implement a list of

Decorator

Attach additional responsibilities to an object
dynamically. Decorators provide a flexible

alternative to subclassing for extending

functionality [3].

Decorator

Class diagram

c<Uses> <<Interface>>
D RS >| 0CComponent

| +doSomething()

component

OCConcreteDecorator OCDecorator

+doSomethingElse() +doSomething()

OCConcreteDecorator

+doSomethingElse()

Decorator

1. More flexibility than static inheritance. (run-

time)

2. Avoids feature-laden classes high up in the

hierarchy.

Facade

Provide a unified interface to a set of interfaces

in a subsystem. Facade defines a higher-level

interface that makes the subsystem easier to use

[3].

Facade

X
o
T
2
G

subsyslem classes

Facade

1. It shields clients from subsystem components.

2. It promotes weak coupling between the
subsystem and its clients.

3. It doesn't prevent applications from using
subsystem classes.

Facade

1. It shields clients from subsystem components.

2. It promotes weak coupling between the
subsystem and its clients.

3. It doesn't prevent applications from using
subsystem classes.

Proxy

Provide a surrogate or placeholder for another

object to control access to it [3].

Proxy

1. A remote proxy can hide the fact that an
object resides in a different address space.

2. A proxy can perform optimizations such as
creating an object on demand.

3. Allows to add additional housekeeping tasks
when an object is accessed.

Other popular Design Patterns

Behavioral patterns:

1. Chain of 6. Memento
responsibility 7. Null object
2. Command 8. State

Strate

Chain of responsibility

TODO

Command

TODO

Interpreter

TODO

lterator

TODO

Mediator

TODO

Memento

TODO

Null object

TODO

State

TODO

Strategy

TODO

Template method

TODO

Visitor

TODO

Case Study

TODO

Use or not?

TODO

Further resources

[1] http://en.wikipedia.org/wiki/Software_design_pattern

[2] http://en.wikipedia.org/wiki/List_of_software_development_philosophies

[3] Gamma, Helm, Johnson & Vlissides (1994). Design Patterns (the Gang of Four book).
Addison-Wesley. ISBN 0-201-63361-2.

[4] Alexander, Christopher (1977). A Pattern Language: Towns, Buildings, Construction.

Oxford University Press. ISBN 0-19-501919-9.

[5]
https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/DesignPattern

[6]

https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/|

http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/List_of_software_development_philosophies
https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/DesignPatterns.html
https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/MVC.html
https://developer.apple.com/library/ios/documentation/general/conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

