
Design Patterns & iOS

Marcin Iwanicki

@marciniwanicki – marciniwanicki.com - marciniwanicki.dev (skype)
https://github.com/marciniwanicki/OCDesignPatterns

From abstraction to real value

Overture - Software
Development Philosophies

Done is better than perfect.

LIM: Less is more.

KISS: Keep it simple, stupid.

DRY: Don't repeat yourself.

DIE: Duplication is evil.

YAGNI: You aren't gonna need it.

Overture – Object-oriented
programming

Object-oriented programming is hard, and

designing reusable object-oriented software is

even harder [3].

Before your code will be reusable it must actually

be usable.

Overture – Gang of Four

Erich Gamma realized the importance of

recurring design patterns while working on his

PhD thesis and prior to the 1991 European

Conference on Object-Oriented Programming he

and Richard Helm stared to catalog patterns.

In 1991 Gamma and Helm were joined by Ralph

Johnson and John Vlissides.

Contents

1. Introduction

2. Design Patterns in Cocoa

3. Other popular Design Patterns

4. Case study

5. Use or not?

6. Further resources

What is a Design Pattern?

Christopher Alexander says, "Each pattern describes a
problem which occurs over and over again in our
environment, and then describes the core of the solution
to that problem, in such a way that you can use this
solution a million times over, without ever doing it the
same way twice" [4].

Design Pattern is a general reusable solution to

a commonly occurring problem.

What is a Design Pattern?

Patterns are abstract design, not code.

Patterns that imply object-orientation or

generally mutable state, are not as applicable in

functional programming languages.

What is a Design Pattern?

Design Patterns required neither unusual

language features nor amazing programming

tricks. They might take a little more work than

ad hoc solutions but the extra efort invariably

pays dividends in increased flexibility and

reusability [3].

What is a Design Pattern?

Design Patterns == Wzorce Projektowe

Design Patterns < Wzorce Projektowe

Elements of a Design Pattern

In general, a pattern has four essential elements:

1. Name

2. Problem

3. Solution

4. Consequences

Types of Design Patterns

Design patterns were grouped into the

categories:

1. Creational patterns

2. Structural patterns

3. Behavioral patterns

4. Concurrency patterns

Design Patterns in Cocoa

Start Developing iOS Apps Today

1. Model-View-Controller (MVC)

2. Target-action

3. Delegation

4. Observer

5. DAO (Facade)

Model-View-Controller (MVC)

The Model-View-Controller (MVC) design pattern

assigns objects in an application one of three

roles: model, view, or controller. The pattern

defnes not only the roles objects play in the

application, it defnes the way objects

communicate with each other [6].

Model-View-Controller (MVC)

Cocoa version of MVC

Model-View-Controller (MVC)

View objects

A view object is an object in an application that

users can see. A view object knows how to draw

itself and can respond to user actions. A major

purpose of view objects is to display data from

the application’s model objects and to enable the

editing of that data [6].

Model-View-Controller (MVC)

Model objects

Model objects encapsulate the data specifc to an

application and defne the logic and computation

that manipulate and process that data.

Ideally, a model object should have no explicit

connection to the view objects that present its

data and allow users to edit that data [6].

Model-View-Controller (MVC)

Controller objects

A controller object acts as an intermediary

between one or more of an application’s view

objects and one or more of its model objects [6].

Target-action

Target-action is a conceptually simple design in

which one object sends a message to another

object when a specifc event occurs [5].

Target-action

- (IBAction)randNumbersAction:
(id)sender
{
 // Do something
}

Target-action

 [self.button addTarget:self
action:@selector(doSomething:)
forControlEvents:UIControlEventTouchUpInside];

...

- (void)doSomething:(id)sender
{
 // Do something
}

Delegation

Delegation is a simple and powerful pattern in

which one object in an app acts on behalf of, or

in coordination with, another object. The

delegating object keeps a reference to the other

object—the delegate—and at the appropriate

time sends a message to it [5].

Delegation

@protocol UIScrollViewDelegate<NSObject>

...
- (void)scrollViewDidScroll:(UIScrollView *)scrollView;
 // any offset changes
- (void)scrollViewDidZoom:(UIScrollView *)scrollView
NS_AVAILABLE_IOS(3_2); // any zoom scale changes

...
- (BOOL)scrollViewShouldScrollToTop:(UIScrollView *)scrollView; //
return a yes if you want to scroll to the top. if not defined, assumes
YES
- (void)scrollViewDidScrollToTop:(UIScrollView *)scrollView; //
called when scrolling animation finished. may be called immediately if
already at top

...

Delegation

@protocol UITableViewDataSource<NSObject>

@required

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
(NSInteger)section;

// Row display. Implementers should *always* try to reuse cells by
setting each cell's reuseIdentifier and querying for available
reusable cells with dequeueReusableCellWithIdentifier:
// Cell gets various attributes set automatically based on table
(separators) and data source (accessory views, editing controls)

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath;

...

Delegation

@protocol UITableViewDelegate<NSObject, UIScrollViewDelegate>

...
// Variable height support
- (CGFloat)tableView:(UITableView *)tableView heightForRowAtIndexPath:
(NSIndexPath *)indexPath;
- (CGFloat)tableView:(UITableView *)tableView
heightForHeaderInSection:(NSInteger)section;
- (CGFloat)tableView:(UITableView *)tableView
heightForFooterInSection:(NSInteger)section;

...
// Called after the user changes the selection.
- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:
(NSIndexPath *)indexPath;
- (void)tableView:(UITableView *)tableView didDeselectRowAtIndexPath:
(NSIndexPath *)indexPath NS_AVAILABLE_IOS(3_0);

...

Observer

1. Notifcations

2. KVO

Data Access Object (DAO)

DAO is an object that provides an abstract

interface to some type of database or other

persistence mechanism. By mapping application

calls to the persistence layer, DAOs provide some

specifc data operations without exposing details

of the database.

Other popular Design Patterns

Creational patterns:

1. Abstract factory

2. Builder

3. Factory method

4. Lazy initialization

5. Object pool

6. Prototype

7. Singleton

Abstract factory

Abstract factory

Provide an interface for creating families of

related or dependent objects without specifying

their concrete classes [3].

Abstract factory

Class diagram

Abstract factory

1. It isolates concrete classes.

2. It makes exchanging product families easy.

3. It promotes consistency among products.

4. Supporting new kinds of products is difficult.

Builder

Separate the construction of a complex object

from its representation so that the same

construction process can create diferent

representations [3].

Builder

Class diagram

Builder

Classical Builder Pattern:

OCConcreteBuilder *builder = [[OCConcreteBuilder alloc]
initWithPropertyA:1];

OCConcreteProduct *product = [[[builder withPropertyB:2]
withPropertyC: 3] build];

Builder

Using category:

OCConcreteProductB *productB = [[[[OCConcreteProductB
alloc] initWithPropertyA:1] withPropertyB:2]
withPropertyC:3];

Builder

1. It lets you vary a product's internal

representation.

2. It isolates code for construction and

representation.

3. It gives you fner control over the construction

process.

Factory method

Defne an interface for creating an object, but let

subclasses decide which class to instantiate.

Factory Method lets a class defer instantiation to

subclasses.

Factory method

Class diagram

Factory method

id<OCProduct> productA = [OCFactory
createProduct:ProductTypeA];

id<OCProduct> productB = [OCFactory
createProduct:ProductTypeB];

Factory method

1. Factory methods eliminate the need to bind

application-specifc classes into your code.

2. Connects parallel class hierarchies.

A potential disadvantage of factory methods is

that clients might have to subclass the Creator

class just to create a particular ConcreteProduct

object.

Lazy initialization

Lazy initialization is the tactic of delaying the

creation of an object, the calculation of a value,

or some other expensive process until the frst

time it is needed [9].

Lazy initialization

@property (readonly) OCElement *element;

...
// @synthesize
...

- (OCElement *)element
{
 if (_element == nil) {
 _element = [OCElement new];
 }
 return _element;
}

Object pool

Object pool uses a set of initialized objects kept

ready to use, rather than allocating and

destroying them on demand.

Object pool

Class diagram

Prototype

Specify the kinds of objects to create using a

prototypical instance, and create new objects by

copying this prototype [3].

@property (nonatomic, copy) OCConcretePrototypeA *prototype;

...

id<OCPrototype> prototype = [OCConcretePrototypeA new];
id<OCPrototype> prototypeCopy = [prototype
copyWithZone:NULL];

Prototype

Class diagram

Prototype

Your options for implementing NSCopying

protocol are as follows:

1. Implement NSCopying using alloc and init.

2. Implement NSCopying by invoking the

superclass’s copyWithZone.

3. Implement NSCopying by retaining the original

object.

file:///Users/maiw/Library/Developer/Shared/Documentation/DocSets/com.apple.adc.documentation.AppleiOS7.0.iOSLibrary.docset/Contents/Resources/Documents/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/Reference/Reference.html#//apple_ref/occ/clm/NSObject/alloc

Singleton

Common singletons:

 [UIApplication sharedApplication];

 [NSFileManager defaultManager];

 [NSNotificationCenter defaultCenter];

 [UIDevice currentDevice];

Singleton

Use the Singleton pattern when there must be

exactly one instance of a class, and it must be

accessible to clients from a well-known access

point [3].

Singleton

Class diagram

Other popular Design Patterns

Structural patterns:

1. Adapter (Wrapper)

2. Bridge

3. Composite

4. Decorator

5. Facade

6. Proxy

Adapter (Wrapper)

Convert the interface of a class into another

interface clients expect. Adapter lets classes

work together that couldn't otherwise because of

incompatible interfaces [3].

Adapter (Wrapper)

Class diagram

Adapter (Wrapper)

1. How much adapting does Adapter do?

2. An adapter class is more reusable when you

minimize the assumptions other classes must

make to use it.

Bridge

Decouple an abstraction from its implementation

so that the two can vary independently.

Bridge

Class diagram

Bridge

1. Improved extensibility.

2. Hiding implementation details from clients.

Bridge

Class diagram

Composite

How to create XML, HTML, or PDF documents

dynamically?

How to create a complex UIView dynamically?

Composite

Compose objects into tree structures to

represent part-whole hierarchies. Composite lets

clients treat individual objects and compositions

of objects uniformly [3].

Composite

Class diagram

Composite

1. Explicit parent references.

2. Sharing components.

3. Maximizing the Component interface.

4. Declaring the child management operations.

5. Should Component implement a list of

Components?

Decorator

Attach additional responsibilities to an object

dynamically. Decorators provide a fexible

alternative to subclassing for extending

functionality [3].

Decorator

Class diagram

Decorator

1. More fexibility than static inheritance. (run-

time)

2. Avoids feature-laden classes high up in the

hierarchy.

3. The code can be hard to learn and debug.

Facade

Provide a unifed interface to a set of interfaces

in a subsystem. Facade defnes a higher-level

interface that makes the subsystem easier to use

[3].

Facade

Facade

1. It shields clients from subsystem components.

2. It promotes weak coupling between the
subsystem and its clients.

3. It doesn't prevent applications from using
subsystem classes.

Facade

1. It shields clients from subsystem components.

2. It promotes weak coupling between the
subsystem and its clients.

3. It doesn't prevent applications from using
subsystem classes.

Proxy

Provide a surrogate or placeholder for another

object to control access to it [3].

Proxy

1. A remote proxy can hide the fact that an
object resides in a diferent address space.

2. A proxy can perform optimizations such as
creating an object on demand.

3. Allows to add additional housekeeping tasks
when an object is accessed.

Other popular Design Patterns

Behavioral patterns:

1. Chain of

responsibility

2. Command

3. Interpreter

4. Iterator

5. Mediator

6. Memento

7. Null object

8. State

9. Strategy

10. Template method

11. Visitor

Chain of responsibility

TODO

Command

TODO

Interpreter

TODO

Iterator

TODO

Mediator

TODO

Memento

TODO

Null object

TODO

State

TODO

Strategy

TODO

Template method

TODO

Visitor

TODO

Case Study

TODO

Use or not?

TODO

Further resources

[1] http://en.wikipedia.org/wiki/Software_design_pattern

[2] http://en.wikipedia.org/wiki/List_of_software_development_philosophies

[3] Gamma, Helm, Johnson & Vlissides (1994). Design Patterns (the Gang of Four book).

Addison-Wesley. ISBN 0-201-63361-2.

[4] Alexander, Christopher (1977). A Pattern Language: Towns, Buildings, Construction.

Oxford University Press. ISBN 0-19-501919-9.

[5]

https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/DesignPatterns.html

[6]

https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/MVC.html

[7]

https://developer.apple.com/library/ios/documentation/general/conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html

[8] Carlo Chung (2011). Pro Objective-C Design Patterns for iOS. Apress. ISBN 978-1-4302-

3330-5.

[9] http://en.wikipedia.org/wiki/Lazy_initialization

http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/List_of_software_development_philosophies
https://developer.apple.com/library/ios/referencelibrary/GettingStarted/RoadMapiOS/DesignPatterns.html
https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/MVC.html
https://developer.apple.com/library/ios/documentation/general/conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

