LOW LEVEL THINKING IN RIGH LEVEL
PROGRAMMING

Btazej Marcinkiewicz

£6dz wiOStuje #6

WHAT WILL THIS TALK BE ABOUT?

AGENDA

1. High level assembly - C

2. What can go wrong in C++7?

3. What's so different in shading languages?
4. How can it run so fast? - ObjC runtime

BRAIN TEASER FOR A GOOD START

#include <stdio.h>
void foo(void)

{
int a;
printf("%d\n", a);
}
void bar (void)
{
int a = 42;
}
int main(void)
{
bar();
foo();
}

cc foo.c && ./a.out
42

HAVE YOU EVER WONDERED...

#include <stdio.h>

void foo(void)

{
int a;
printf("%d\n", a);
}
int main(void)
{
foo();
}

#include <stdio.h>

void foo(void)
{
static int a;
printf("%d\n", a);
}

int main(void)
{
foo();

}

WHY IS IT S0 BIG?

#include <stdio.h>

struct X

{
int a;
char b;
int c;

}i

int main(void)

{
printf("%zu\n", sizeof(int));
printf("%zu\n", sizeof(char));
printf("%zu\n", sizeof(struct X));

THE SPIRIT OF C

There are many facets of the spirit of C, but the essence is a
community sentiment of the underlying principles upon which
the C language is based. Some of the facets of the spirit of C
can be summarized in phrases like (Introduction to C
Rationale):

e Trust the programmer.

e Don't prevent the programmer from doing what needs to be
done.

e Keep the language small and simple.

e Provide only one way to do an operation.

e Make it fast, even if it is not guaranteed to be portable.

WHAT ABOUT C++1

A() { printf("A()\n"); };
A(int a) { printf("A(int a)\n"); };
~A() { printf("~-A()\n"); };

struct A
{

}i

struct B

{
B(int b) { a = b; };
B(long 1) : a(l) { };
A a;

}i

int main()

{

printf("1\n");

{ B b(int(2)); }
printf("2\n");

{ B b(long(2)); }
return 0;

EXCEPTIONS AND RTTI

e EXceptions mechanism is intended to handle error situations.
e RTTI - run time type information. Allows dynamic check if
object is instance of a specific class.

VIRTUAL WORLD

#include <stdio.h>

struct X

{
int a;
char b;
int c;

virtual void setA(int v) { a = v; }
int getA() { return a; }
}i

int main(void)

{
printf("%zu\n", sizeof(struct X));
return 0;

SCRAPING THE SILICON

 GPU is designed to execute many simple operations at once.

e GPUs have totally different assembly, though shading
languages look similar to C.

e Heaviest operation - global memory read.

e GPUs are optimized for image processing operations.

MADNESS

float main(float x : TEXCOORD) : SV Target

{
return (x + 1.0f) * 0.5f;

}

float main(float x : TEXCOORD) : SV Target
{

return x * 0.5f + 0.5f;

}

FUN FACTS

float main(float2 x : TEXCOORD) : SV Target
{

return abs(a.x) * abs(a.y);

}

float main(float2 x : TEXCOORD) : SV Target
{

return abs(a.x * a.y);

}

A BIT OF SORCERY

float Q rsqrt(float number)
{

long 1i;
float x2, vy;
const float threehalfs = 1.5F;

X2 = number * 0.5F;

y = number;

i =* (long *) &y; // evil floating point bit level hacking
i = 0x5£3759df - (1> 1); // what the fuck?

y = * (float *) &i;

y =y * (threehalfs - (x2 *y *y)); // 1lst iteration

return y;

WHY COMPILER DIDN'T OPTIMIZE IT?

e Results might not be the same.

e May introduce INF or NaN.
e Compiler cannot break the rules, you've written the code so

you probably knew what you wanted to do.

WHAT ABOUT MOBILE?

e Objective C 3rd most popular programming language
(TIOBE).

e Superset of C language.

e Smalltalk style messaging.

LONG TIME AGO...

e Capture image from front-facing camera and map eyes
position to looking direction in a 3D scene.

e Do it fast <=> 60fps.

e Do it on mobile.

Su clﬂsElll
@interface ETKernel {

float * kernelValues;

}

- (float)getKernelValueAtPosition: (CGPoint)position;
@end

0BJC RUNTIME

Every message:

[self doSomethingTo:varl];

Is converted into C function call:

objc msgSend(self, @selector(doSomethingTo:), varl);

WE NEED T0 GO DEEPER

id objc msgSend(id receiver, SEL name, arguments...);

e Chec
e Chec
e Hand

K if receiver is not nil.
K if receiver responds to selector.

e KVO notifications.

HOW 0BJC OBJECTS ARE BUILT

e Associative containers

e Every object contains pointer to superclass
e Retain count.

e Dispatch table

DISPATCH TABLE

superclass

selector...address
selector...address -
selector...address

The object's superclass selector...address
selector...address

selector...address

superclass

selector...address
selector...address
selector...address

{ instance variable
instance variable
§

Il'l

WHY SHOULD | CARE?

e Performance impact on every method call (also properties).
o UlScrollView scrolling speed.

WHY MY SCROLL VIEW ISN'T SCROLLING
SMOOTHLY?

e Deep view hierarchy.
e Too much alpha blending.
e Too many allocations.

WHEN PROFILER CHEATS...

e Default output of Instruments is hard to read
e Hide missing symbols, Hide system libraries filter
e What are we missing?

will ATET = 1:58 PM B al ATEY = 1:58 PM -

IMAGE LOADING PITFALLS

e [Ullmage imageNamed:] vs [Ullmage
imageWithContentsOfFile:]
e Multilevel image cache

DECOMPRESSION SICKNESS

o Use CoreGraphics kCGlmageSourceShouldCache flag
e Draw image in background to force decompression
e Watch out for memory

ANIMATIONS

e Problem - load&run ~150 frames of animation

e Challenge - keep it smooth

e Solution - show first frame, and run animation after scrolling
IS finished ;]

CONCLUSION

e Remove all properties from code?
e Should everyone know that?
e Don't turn off thinking while writing code.

CONTACT

Btaze] Marcinkiewicz
blazej.marcinkiewicz @ polidea.com
@blazejmar

