
LOW LEVEL THINKING IN HIGH LEVEL
PROGRAMMING
Błażej Marcinkiewicz

Łódź wiOSłuje #6

WHAT WILL THIS TALK BE ABOUT?

AGENDA
1. High level assembly - C
2. What can go wrong in C++?
3. What's so different in shading languages?
4. How can it run so fast? - ObjC runtime

BRAIN TEASER FOR A GOOD START
#include <stdio.h>
void foo(void)
{
 int a;
 printf("%d\n", a);
}
void bar (void)
{
 int a = 42;
}

int main(void)
{
 bar();
 foo();
}

cc foo.c && ./a.out
42

HAVE YOU EVER WONDERED...
#include <stdio.h>

void foo(void)
{
 int a;
 printf("%d\n", a);
}

int main(void)
{
 foo();
}

#include <stdio.h>

void foo(void)
{
 static int a;
 printf("%d\n", a);
}

int main(void)
{
 foo();
}

WHY IS IT SO BIG?
#include <stdio.h>

struct X
{
 int a;
 char b;
 int c;
};

int main(void)
{
 printf("%zu\n", sizeof(int));
 printf("%zu\n", sizeof(char));
 printf("%zu\n", sizeof(struct X));
}

THE SPIRIT OF C
There are many facets of the spirit of C, but the essence is a
community sentiment of the underlying principles upon which
the C language is based. Some of the facets of the spirit of C

can be summarized in phrases like (Introduction to C
Rationale):

Trust the programmer.
Don't prevent the programmer from doing what needs to be
done.
Keep the language small and simple.
Provide only one way to do an operation.
Make it fast, even if it is not guaranteed to be portable.

WHAT ABOUT C++?
struct A
{
 A() { printf("A()\n"); };
 A(int a) { printf("A(int a)\n"); };
 ~A() { printf("~A()\n"); };
};
struct B
{
 B(int b) { a = b; };
 B(long l) : a(l) { };
 A a;
};
int main()
{
 printf("1\n");
 { B b(int(2)); }
 printf("2\n");
 { B b(long(2)); }
 return 0;
}

EXCEPTIONS AND RTTI
Exceptions mechanism is intended to handle error situations.
RTTI - run time type information. Allows dynamic check if
object is instance of a specific class.

VIRTUAL WORLD
#include <stdio.h>
struct X
{
 int a;
 char b;
 int c;

 virtual void setA(int v) { a = v; }
 int getA() { return a; }
};

int main(void)
{
 printf("%zu\n", sizeof(struct X));
 return 0;
}

SCRAPING THE SILICON
GPU is designed to execute many simple operations at once.
GPUs have totally different assembly, though shading
languages look similar to C.
Heaviest operation - global memory read.
GPUs are optimized for image processing operations.

MADNESS
float main(float x : TEXCOORD) : SV_Target
{
 return (x + 1.0f) * 0.5f;
}

float main(float x : TEXCOORD) : SV_Target
{
 return x * 0.5f + 0.5f;
}

FUN FACTS
float main(float2 x : TEXCOORD) : SV_Target
{
 return abs(a.x) * abs(a.y);
}

float main(float2 x : TEXCOORD) : SV_Target
{
 return abs(a.x * a.y);
}

A BIT OF SORCERY
float Q_rsqrt(float number)
{
 long i;
 float x2, y;
 const float threehalfs = 1.5F;

 x2 = number * 0.5F;
 y = number;
 i = * (long *) &y; // evil floating point bit level hacking
 i = 0x5f3759df - (i >> 1); // what the fuck?
 y = * (float *) &i;
 y = y * (threehalfs - (x2 * y * y)); // 1st iteration

 return y;
}

WHY COMPILER DIDN'T OPTIMIZE IT?
Results might not be the same.
May introduce INF or NaN.
Compiler cannot break the rules, you've written the code so
you probably knew what you wanted to do.

WHAT ABOUT MOBILE?
Objective C 3rd most popular programming language
(TIOBE).
Superset of C language.
Smalltalk style messaging.

LONG TIME AGO...
Capture image from front-facing camera and map eyes
position to looking direction in a 3D scene.
Do it fast <=> 60fps.
Do it on mobile.

SO CLOSE...
@interface ETKernel {
 float *_kernelValues;
}

- (float)getKernelValueAtPosition:(CGPoint)position;
@end

Is converted into C function call:

OBJC RUNTIME
Every message:

[self doSomethingTo:var1];

objc_msgSend(self, @selector(doSomethingTo:), var1);

WE NEED TO GO DEEPER
id objc_msgSend(id receiver, SEL name, arguments...);

Check if receiver is not nil.
Check if receiver responds to selector.
Handle KVO notifications.
...

HOW OBJC OBJECTS ARE BUILT
Associative containers
Every object contains pointer to superclass
Retain count.
Dispatch table

DISPATCH TABLE

WHY SHOULD I CARE?
Performance impact on every method call (also properties).
UIScrollView scrolling speed.

WHY MY SCROLL VIEW ISN'T SCROLLING
SMOOTHLY?

Deep view hierarchy.
Too much alpha blending.
Too many allocations.

WHEN PROFILER CHEATS...
Default output of Instruments is hard to read
Hide missing symbols, Hide system libraries filter
What are we missing?

IMAGE LOADING PITFALLS
[UIImage imageNamed:] vs [UIImage
imageWithContentsOfFile:]
Multilevel image cache

DECOMPRESSION SICKNESS
Use CoreGraphics kCGImageSourceShouldCache flag
Draw image in background to force decompression
Watch out for memory

ANIMATIONS
Problem - load&run ~150 frames of animation
Challenge - keep it smooth
Solution - show first frame, and run animation after scrolling
is finished ;]

CONCLUSION
Remove all properties from code?
Should everyone know that?
Don't turn off thinking while writing code.

Q&A

CONTACT
Błażej Marcinkiewicz

blazej.marcinkiewicz@polidea.com
@blazejmar

